TIMKEN

High resolution Hall effect encoders provide high accuracy signals in harsh environments including the presence of high external magnetic fields .

PRESENTATION OUTLINE

- 1. TIMKEN INTRODUCTION
- 2. APPLICATIONS & MARKET DEMAND FOR HIGH RESOLUTION OFF AXIS SENSORS
- 3. OFF AXIS SENSORS TYPICAL CONFIGURATIONS
- 4. THEORY OF OPERATION:
 - HIGH RESOLUTION HALL ARRAY SENSORS
 - COSINE AND SINE SIGNAL GENERATION
 - REJECTION OF EXTERNAL FIELDS
- 5. OPERATION WITH VARYING IN FIELD STRENGTHS
- 6. TESTING RESULTS
- 7. CONCLUSIONS

15 years in sensor business

SUPPLIER OF INTEGRATED HALL ENCODER PRODUCTS SERVING INDUSTRIAL CUSTOMERS & CRITICAL VEHICLE SYSTEMS

SENSOR PRODUCTS & APPLICATIONS

OFF AXIS HIGH RESOLUTION MAGNETIC SENSORS ARE USED ON LARGE & SMALL MOTORS

MAGNETIC ENCODER MARKET

- The Magnetic Encoder Market is Growing
 - Reliability of magnetic technology
 - Environmental capabilities
 - Accurate feedback from system-on-a-chip designs
 - Excellent value

Off Axis Magnetic Sensor Configuration

OFF AXIS SENSORS

- Sensor is offset from the center of the rotating shaft
- Direct replacement for optical encoders.
- Can be used inside packaged encoders or integrated into AC or permanent magnet DC motor

OFF AXIS SENSORS

- Multi-pole magnet: Typically 17 to 300 mm diameter axial or radial
- Sensor IC typically has a 8 to 16 Hall element array
- Produces a Sine & Cosine signal for each pole pair and signal is converted into a quadrature or serial position signal

THEORY OF OPERATION FOR OFF AXIS SENSORS

Objective: Produce an optical quality high resolution signal from a low resolution magnetic target.

- ✓ Immune to external fields
- ✓ Immune to changes in field strength

THEORY OF OPERATION HALL ARRAYS

16 Hall Elements Measure Field Strength

Summing 16 Hall outputs together to produce a robust signal

THEORY OF OPERATION: COSINE SIGNAL

H1 +H2 +H3 +H4 +H5 +H6 +H7 +H8 -H9-H10-H11-H12-H13-H14-H15-H16 = Cosine

- We add the signal from 8 green Halls and subtract the signal from red 8 Halls
- Combined signal is 16X stronger & sampled 16 time across a N-S pole pair

THEORY OF OPERATION: SINE SIGNAL

-H1 -H2 -H3 -H4 +H5 +H6 +H7 +H8 +H9+H10+H11+H12-H13-H14-H15-H16 = Sine

- We add the signal from 8 green Halls and subtract the signal from red 8 Halls
- Combined signal is 16X stronger & sampled 16 time across a N-S pole pair

THEORY OF OPERATION: BIAS FIELD REJECTION

-H1 -H2 -H3 -H4 +H5 +H6 +H7 +H8 +H9+H10+H11+H12-H13-H14-H15-H16 = Sine

- We add the signal from 8 Halls and subtract the signal from 8 Halls
- Produces a <u>Sine wave that is not affected by common mode fields</u> on the array

THEORY OF OPERATION: BIAS FIELD REJECTION

- Earths field is +/- 0.43 Gauss ~1% of a +/- 50 G working field. This alone would cause a 3 count error with fixed magnetic thresholds.
- New sensors can reject over 98% of external fields even when external field is stronger than the magnetic field from the target magnet

MAGNETIC AMPLITUDE AND AIR GAP

Sine & Cosine amplitudes track each other since both are derived from the same 16 Hall signals

TIMKEN

ARCTANGENT WEIGHTED CONVERTER

Sensor chips typically use an ARCTAN weighted converter that detects the RATIO of the SIN & COS signals which makes the circuit independent of Sin & COS amplitude.

RESULTS OF TESTING AND MODELING

MAGNETIC TARGETS:

Models of multi pole target magnets

Sample target and image of actual magnetic fields

AFFECT OF A MAGNETIC BIAS FIELD ON ACCURACY

Accuracy is +/- .17° over a full turn with a 0 G bias field

Accuracy is +/- .21° over a full turn with a 500 G bias field

Sensor: Timken MPS512. Target: 21 mm Dia. 25 Pole pair polymer bonded ferrite Plot shows accumulated accuracy at 10,000 edges per revolution

ERROR: EXTERNAL COMMON-MODE FIELDS

From magnetized shafts, motor windings and motor magnets

TOLERANCE TO AIR GAP VARIATION:

Accuracy is better then 1/10° over a full turn with a 40% variation in field strength

Sensor: Timken MPS512. Target: 36 mm Dia. 25 Pole pair polymer bonded ferrite TIMKEI

CONCLUSIONS

- It is possible to use modern magnetic sensors in applications where traditional magnetic sensors could not be used
- Modern off axis magnetic sensors incorporate innovative circuitry to reject external magnetic fields
- Modern off axis magnetic sensors incorporate innovative circuitry that permit accurate high resolution sensing with changing air gaps
- Off axis high resolution magnetic sensors offer advantages in applications that exceed the environmental capabilities of optical encoders

